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A new analytical expression for the contact value of the solute-solvent pair distribution
function of a binary hard-sphere mixture at infinite dilution is proposed, based on
scaled-particle-theory-like arguments. For high solute-solvent diameter ratio it predicts per-
fect agreement with the simulation results.
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During the past several years, renewed interest has been focused on hard-
sphere (HS) systems with large differences in their component diameters
(seel* and references therein). Such a system that is dilute with respect to
the larger spheres can serve as a simple model of a colloidal suspension.
The solute-solute and solute-solvent pair distribution functions are key
quantities of interest, and their contact values yield the equation of state.
One approach for obtaining analytical approximations for these contact
values is based on various extensions of the scaled-particle theory of Reiss
et al.5 (e.g., refs*5). In this note we develop a new analytical formula for the
contact value of the solute-solvent pair distribution function at infinite di-
lution, employing ideas similar to those used in our previous work on a
geometrically-based hierarchy of integral equations for HS systems®.
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THEORY

We consider a binary HS mixture, where the solvent corresponds to hard
spheres of diameter o, = 1 and the solute to hard spheres of diameter o, = d,
which is at infinite dilution in the solvent. In this limiting case, the pack-
ing fraction of solute is
n, :ENzog :Edeg -0
6 V 6 V
and the overall packing fraction of the system is given by that of the solvent

— _ T Nlo-f —_ T Nl
n=ny== e
6 V 6V
where N; and N, are the numbers of spheres of solvent and solute, respec-
tively, and V is the system volume.

The contact value of the solute-solvent distribution function at infinite

dilution, g, (d,,), can be expressed in terms of chemical potentials via’

Ingy;(@dy,) =Bu; (D) +Buy” @) -Bug” (1.d) 1)

where superscript e denotes an excess value, o denotes infinite dilution, B =
1/(KT), u; (2) is the excess chemical potential of pure solvent spheres, p; (d)
is the excess chemical potential of a HS of diameter d, and p;,” (1,d) is the
excess chemical potential of the hard diatomic formed by two contacting
spheres of diameters 1 and d.

The combination of the last two terms in Eq. (1) corresponds to the work
needed to extract an imaginary solvent sphere (cavity) of diameter 1 from
inside the larger sphere to a position at contact (Fig. 1). This work is given by

Bwy, (1,d) = Bug,” (1,d) —Buy ™ (d) - (2

The work can be calculated in a way similar to that used in the BGY-like
hierarchy of integral equations developed by us previously®:

Bw,, (1,d) = ZHI: dx Icloseud(cos 9 6% (x,cos § cos 0 3)
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where p'¥(x,cos6) is the conditional three-particle density function corre-
sponding to a solute (1)-solvent cavity (2)-solvent particle (3) configura-
tion, where the cavity is in contact with a solute particle 3 (see Fig. 1). The
configuration of particles is described by the solute-cavity centre-to-centre
distance x, which expresses the gradual emergence of the solvent cavity
from the solute particle (x = 0 corresponds to a fully submerged particle and
x = 1 to the pair in contact), and by the angle 8 between the vectorsr,, and
I,;- The lower integration limit cos 8* in the inner integral occurs when par-
ticles 1 and 3 are in contact. For x - 0 the conditional density p!3(0,1) be-
comes the contact value of the two-particle density p®(d,3) = p®(d,,). Since
particle 3 remains in contact with particle 2 for all configurations in Eq. (3),
a not unreasonable approximation is that its value does not considerably
differ from this limiting value.
On these grounds, Eq. (3) can be approximated by

BWlZ (1'd) = p(2 )(d 12 )Avexcl a (4)

where AV, is the increase in volume excluded to a sphere centre of parti-
cle 3 when particle 2 is fully emerged from particle 1, given by the differ-
ence between the excluded volumes of the contacting solute-solvent
diatomic and solute particles:

Fic. 1
Gradual emergence of a solvent particle (2) of diameter o from a solute particle (1) with diame-
ter d. The shadowed area corresponds to the maximum increase in excluded volume AV, of
Eq. (5)
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AV _Tm7+4d

== 5
excl 61+d ()

Since p?(d,,) is given by the contact value of solute-solvent pair distribu-
tion function, we have

p*(dy,) =Py (dy,) (6)

and we can thus write

Bw,, (1d) = ng2, (d,,) ‘c‘f . )

The parameter a depends on density and the solute diameter d. Equations
(1), (2) and (7) may be combined to yield

_ 1+d [Bui(®) - In(g,; (d1,))]
7+4d ngs, d,,) '

(8)

For low density, a is equal to unity and for greater densities it decreases slowly.

Calculation of Bu;(2) requires knowledge of an equation of state of the
pure HS fluid. We use here the simple but precise® equation of state due to
Kolafa®

2 _ 3
, = PV _1+n+n° -2/3n°(1+n) )
N kT @-n?

which gives the contact value for a pure fluid:

1-1/2n+1/12n? -1/6n?

9,.(» = (10)
' €-n?
and the reduced excess chemical potential:
ey~ B n(58 -79n +39n° -8°)
D==In(1-n)+ . 11
Bur (D) 3 1L-n 6(1-1)° (11)
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Provided we know g, (d,,), using Egs (8) and (11), we can calculate values
of a. We can gain an idea of the expected behaviour of a by using recently
published simulation data®. In Fig. 2 we show results for o for a wide range
of diameters at the relatively high density p = 0.8. It can be seen that a can
be reasonably approximated by the simple linear formula

o=a+hb/d. (12)

The parameters a and b can be obtained from two exact limiting conditions,
valid for pure HS and for a HS at a hard wall, respectively:

9,,(d;,) =9, (13)
and
limg;(d,)=2. (14)
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Fic. 2

Dependence of the parameter a on the reciprocal diameter 1/d at the density p = 0.8. Circles
correspond to the values obtained from the simulation data of Viduna and Smith* and the line
is the interpolation formula (12)
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Using these conditions and the interpolation formula of Eq. (12), we may
obtain an expression for g, (d,,). Solving the previous set of equations we
obtain

Ing;;(dy,) = B“f(l) +

7+ 4d 82[Bu; (1) - In(g, ()] - 111 - [Bs (D) ~In2] 5,0 2
O1+d 44z9,(1)d O

where the Lambert function, W(x), is the principal branch of the solution
of the equation W(x)eW® = x (ref.10).

RESULTS AND DISCUSSION

In Fig. 3, we show the solute-solvent contact distribution function at infi-
nite dilution as a function of the reciprocal solute diameter. The simulation
data due to Viduna and Smith* are compared with several theoretical pre-
dictions. Two predictions use the same general formula:

0.0 0.1 0.2 0.3
1/d

Fic. 3
Comparison of the solute-solvent contact distribution function in an infinitely dilute binary
hard-sphere mixture at the density p = 0.8. The circles are the simulation data (Viduna and
Smith4), the full line corresponds to our results of Eq. (15), the dashed line and dotted line
were obtained from the eCS and BMCSL equations of state, respectively
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C,+C,d +C,d?

= -
912( 12) (1+d)2

(16)

The coefficients C,, C; and C, are given by the Boublik-Mansoori-
Carnahan-Starling-Leland equation of state**'? (BMCSL)

Co :1‘ﬂ (17)

_4-2n +2In(1—r]) (18)
to@-n? n

) :—1+6r]—3r]2 _2In(1-n) (19)

(1-n)? n

or by the extended Carnahan-Starling equation of state (eCS) due to Stantos
et al.®
4-3n _In(l-n)

C. = 20
° 6@l-n)? 3n (20)

_4(4-3n) 10In(1-n)
C, = >+
3(1-n) 3n

(21)

_—4+17n-9n* _3In(1-n)
2(1-n)® n

(22)

2

The prediction obtained from BMCSL systematically underestimates the
contact distribution function. The values obtained from eCS are in perfect
agreement with the simulation data at moderate solute diameters d but
slightly overestimate them at high diameters d. In this region our new for-
mula (15) gives superior results; however, it overestimates the contact val-
ues at smaller diameters d.

We also examined the sensitivity of our approach to the precise form of
Eqg. (12), by trying other interpolating formulae which are nearly linear in
1/d (e.g., a = (a + b/d)'/?), and to the precise form of the pure HS equation of
state. We found the numerical results to be nearly independent of the ap-
proximations chosen.
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The proposed method for calculation of g, (d,,) is based on the simplest
(0-th order) term in the hierarchy of integral equations®. Higher-order
terms may also be used, at the expense of more complicated calculations. In
such a case, the resulting theory will probably give even more accurate re-
sults, and can also be used to calculate the solute-solute pair distribution
function, which is a much more challenging problem than its solute-solvent
counterpart and which is an object of much interest®.
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